The Hole Argument in Homotopy Type Theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Type Theory

Introduction 3 1 A short guide to constructive type theory 7 1.1 A dependent type over a type . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.2 Dependent sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Defining types inductively . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Type theor...

متن کامل

Homotopy limits in type theory

Working in homotopy type theory, we provide a systematic study of homotopy limits of diagrams over graphs, formalized in the Coq proof assistant. We discuss some of the challenges posed by this approach to formalizing homotopy-theoretic material. We also compare our constructions with the more classical approach to homotopy limits via fibration categories.

متن کامل

Type Theory and Homotopy

The purpose of this informal survey article is to introduce the reader to a new and surprising connection between Geometry, Algebra, and Logic, which has recently come to light in the form of an interpretation of the constructive type theory of Per Martin-Löf into homotopy theory, resulting in new examples of certain algebraic structures which are important in topology. This connection was disc...

متن کامل

On the homotopy groups of spheres in homotopy type theory

The goal of this thesis is to prove that π4(S) ' Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(S) with k < n, and...

متن کامل

Modalities in homotopy type theory

Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a “localization” higher inductive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations of Physics

سال: 2019

ISSN: 0015-9018,1572-9516

DOI: 10.1007/s10701-019-00293-9